

Dublin Mountains Visitor Centre

Engineering Report for Planning DMVC-ROD-XX-XX-RP-C-EngRpt

JULY 2017

Dublin Mountains Visitor Centre, Hell Fire Club, Dublin

Engineering Report for Planning

1.	Introduction1							
2.	Proposed Development1							
3.	Site	Site Information						
	3.1	SITE LOC	ATION	2				
	3.2	SITE TOP	OGRAPHY	2				
3.3 SITE HYD			ROLOGY	2				
	3.4	SITE GEO	DLOGY	2				
4.	4. Water Supply							
	4.1	EXISTING	WATER SUPPLY	3				
	4.2	PROPOSE	ED WATER SUPPLY	3				
5.	Foul	Drainag	e	4				
	5.1	EXISTING	FOUL DRAINAGE	4				
	5.2	Propose	D FOUL DRAINAGE	4				
6.	Surf	ace Wate	r Drainage	5				
	6.1	EXISTING	SURFACE WATER DRAINAGE	6				
	6.2	Propose	ED SURFACE WATER DRAINAGE	6				
_	6.3	FLOOD R	ISK ASSESSMENT	8				
7.	Summary							
Ap	pendi	ix A	Site Geology					
Appendix B			Drainage & Watermain Records					
Appendix C		ix C	Copy of Preconnection Enquiry					
Appendix D		ix D	Water Demand Calculations					
Appendix E		ix E	Surface Water Storage Calculations					
Appendix F			PFRA Integrated Map_221					
Appendix G			Typical Surface Water Storage Details					

1. INTRODUCTION

This report has been prepared as part of a planning package submitted on behalf of South Dublin County Council regarding the proposed development at the Hell Fire Club (Montpelier Hill) in Dublin. This report sets out the Engineering basis for the planning stage design of the scheme in terms of surface drainage, foul drainage and water supply.

2. PROPOSED DEVELOPMENT

The development site consists of two large hillside woodland areas, the Hell Fire Woods (105 hectares) and Massy's Woods (42 hectares), located 2.5km to the south of Dublin's urban fringe, to the west and east of the R115 road respectively.

The site contains a number of protected structures including the Hell Fire Club, passage tombs, wedge tombs, standing stones and Massy's Woods walled gardens and associated ruins.

The proposed development will consist of:

- Improvements to existing entrance to the Hell Fire Woods from the R115, with provision of pedestrian footpaths. The R115 will be a two-way road, 5-6m wide with a 1.5m wide footpath. Some isolated sections will be a 3-3.5m single lane road, with traffic calming markings.
- Upgrade works to existing car park to increase parking provision from 80 no. car parking spaces to 275 no. car parking spaces and 5 no. coach parking spaces.
- Replacement of the conifer trees around the parking area that are due for felling in accordance with sustainable forest planting.
- Construction of visitor centre building at the Hell Fire Woods (Gross floor area: 966 sq. m) (Dublin Mountains Visitor Centre), to consist of two buildings side by side, situated parallel to the existing forest road, at a level of approx. 300m above sea level. They will contain basic facilities for walkers and casual visitors, a seated café for 80 no. people and an interpretation, exhibition and education facility.
- Construction of pedestrian footbridge and 'bridge house' to link the Hell Fire Woods to Massy's Woods, crossing over the R115.
- Development of new trails including a circular walkway to the summit of Montpelier Hill, encircling the Hell Fire Club (protected structure) and the Neolithic passage tombs. The circular walkway will incorporate information panels for visitor orientation and interpretation.
- General upgrading of existing trails and routes in accordance with guidelines produced by Irish Trails.
- Conservation works to the Hell Fire Club building, a protected structure. To be conserved as a ruin with minimal intervention, with discreet lighting proposed on the interior of the building as part of a long-term monitoring and management programme.

- Conservation works to Massy's Woods walled gardens, a protected structure. To be conserved as a ruin with minimal intervention through removal of overgrowth currently causing damage to the structure(s).
- Conversion of coniferous forest to northern and eastern slopes of Montpelier Hill into a permanent broadleaved/ mixed woodland landscape. Commercial forestry to the west will be retained.
- Installation of a 150mm diameter sewage pipe running under the R115 which will connect the proposed site to the existing sewer network.
- Construction of a series of six small storage ponds / wetlands across the lower areas of Montpelier Hill as part of a sustainable drainage strategy.
- Provision of discreet lighting to the car park area, along the treetop bridge and along the forest road route to the visitor centre building.

3. SITE INFORMATION

3.1 Site Location

To the north the site is bounded by the townlands of Oldcourt, Woodtown and Newtown and by the Dublin Mountains, culminating at Kippure (Co. Wicklow) in the south. The Hell Fire Woods are bounded to the west by the R114 and the Ballymorefinn Road and to the east partially by the R116, which runs into the Wicklow Way. This area is the most mountainous in Dublin and is also where the River Dodder rises, feeding into the reservoirs at Bohernabreena and giving rise to the picturesque linear parks along the Dodder Valley.

3.2 Site Topography

The site slopes steeply upwards from the east to west with a rise of approximately 41m from the existing car park entrance to the proposed visitor centre (gradient of 1:4.5). The R115 Killakee Road falls from south to north at an approximate gradient of 1:13.

3.3 Site Hydrology

Rainfall currently runs off Montpelier Hill easterly to the R115 Killakee Road and to the north of the Massy's Woods catchment area. A river runs in a northerly direction through the site, along the eastern boundary of Massy's Woods. This river is one of the headwaters of the Owendoher River, a significant river in south Dublin.

The GSI mapping website, <u>www.gsi.ie</u>, classifies the groundwater aquifer in the area as a locally important aquifer – bedrock which is moderately productive only in local zones. The groundwater vulnerability at the site is classified as extreme.

Refer to Appendix A for details of the GSI Maps.

3.4 Site Geology

Information obtained from the GSI website indicates that the site has predominantly shallow soils derived from non-calcareous rocks or gravels over bedrock outcrop and subcrop.

Six trial pits were undertaken at the site. Two trial pits were excavated in Massy's Woods to investigate the suitability of the area for on-site disposal of wastewater.

Two trial pits were also excavated at the location of the proposed car park and two at the location of the proposed buildings to investigate the type of soil and depth to bedrock in these locations. The trial pits undertaken indicate that rock is relatively close to the surface at the location of the proposed building. The subsoil in this area and at the location of the proposed car park consists predominantly of sand. The depth to rock at the proposed car park is approximately 1.6m. In Massy's Wood, the subsoil is predominantly clay, indicating that it will have poor infiltration rates. Bedrock was not encountered in the trial pits in Massy's Woods.

A detailed Site Investigation will be completed prior to construction to provide details of the geology of the site.

Refer to Appendix A for details of the Site Geology.

4. WATER SUPPLY

4.1 Existing Water Supply

There is no existing water supply serving the site of the proposed development.

4.2 **Proposed Water Supply**

A new watermain line will be required to serve the development. The closest existing public watermain is located at the intersection of the R115 (Old Military Road/Killakee Road) and the R113 (Gunny Hill).

A new connection will be required into this 4" UPVC pipe and approximately 1.5km of new 150mm diameter watermain pipe will be required along the Old Military Road/Killakee Road and up the eastern face of Montpelier Hill to bring the watermain supply to the proposed visitor centre.

The new watermain will be located a minimum of 6m away from the proposed building and will comply with the Irish Water Requirements and Standard Details for Watermains. A pre connection enquiry has been submitted to Irish Water but no response has been received at the time of writing this report.

It is estimated that visitor numbers will grow to approximately 300,000 per annum by the end of the completed developments fifth year. This equates to average weekly visitor numbers of 5,769 and average daily visitor numbers of 824.

The main features of the proposed development that will require a water supply are the restaurant and toilet facilities. The EPA Wastewater Treatment Manual for Small Communities, Business, Leisure Centres and Hotels gives daily usage estimates for each of these facilities:

- Restaurant 15 L/day per person
- Bar drinkers 10 L/day per person
- Bar staff 60 L/day per person
- Toilet blocks (per use) 5 L/day per person

Based on these values and the projected visitor numbers the future peak daily demand has been calculated as 10.678 m³/day, refer to section 5.2.1 below.

It should be noted that an allowance has been made for the demand for drinking water for visitors. The result of this is that the incoming daily demand noted in section 4.2 is greater than the outgoing daily demand in section 5.2.1.

All watermains will be constructed in accordance with Irish Water requirements.

Refer to Appendix B for a sketch of watermain records provided by South Dublin County Council.

Refer to Appendix D for water demand calculations

Refer to Drawings DMVC-ROD-Z0-00-DR-C-0030-32 for the proposed watermain layout

5. FOUL DRAINAGE

It is proposed to provide new separate surface water and foul drainage systems to serve the proposed development. This section outlines the existing foul drainage services onsite and gives our proposals for the additional foul water drainage requirements proposed for the development.

5.1 Existing Foul Drainage

There is no existing foul drain serving the site of the proposed development.

5.2 **Proposed Foul Drainage**

A new foul sewer line will be required to serve the development. The closest existing public foul sewer is located at Hunters Meadow at the bottom of Gunny Hill (R113).

An option of collecting and treating the foul discharge on site was examined as part of the design process. However, due to the poor infiltration encountered in the trial holes and the shallow rock levels, the site was not deemed suitable for on-site treatment and ground discharge. Any effluent from the system would likely make its way to the Glendoo Brook and result in potential pollution. Therefore, it is proposed to construct a 150mm diameter sewer from the visitors centre to the car park entrance. This will connect into a newly constructed 150mm diameter sewer that will run below the new footpath/carriageway from the car park entrance to the intersection of the Old Military Road/Killakee Road and Gunny Hill. The sewer will follow Gunny Hill until it connects into the existing 225mm diameter foul sewer at Hunters Meadow. The new sewer line will be approximately 2.5km long.

There are concerns that the construction of a public sewer line at this location will open up the surrounding area for development and expansion of the Dublin urban area. With this in mind, the smallest allowable pipe was chosen for the design. This has greatly reduced the potential of the pipe to be used as a connection point for a large scale development.

A steep gradient is required for the sewer to suit the steep nature of the site. The sewer gradient from the visitor centre to the car park entrance is limited to a maximum of 1:10 and the gradient from the car park entrance to the proposed connection is limited to a maximum of 1:10. This is shallower than the existing surface gradient which, from the visitor centre to the car park entrance is 1:5. The gradient from the car park entrance to the proposed connection is 1:13.

This has been done to ensure that the flow in the pipe is at a speed which prevents separation of the fluids and solids. If the sewer is too steep, the fluid flows at a faster speed and the solid potion is left behind, leading to blockages. The flow velocity in the pipe has been limited to 3m/sec when flowing full in accordance with the Irish Water Code of Practice for Wastewater Infrastructure. The maximum gradient of 1 in 10 has been calculated using the Colebrook-White formula for the flow capacity of

pipeline to cater for the above velocity. To facilitate this approach backdrop manholes are required in the design.

Recessed manhole covers will be used where required within the curtilage of the site.

A pre-connection enquiry has been submitted to Irish water but no response has been received at the time of writing this report.

5.2.1 Hydraulic & Organic Loading

Daily foul discharge has been estimated based on predicted visitor and staff numbers and flow rates. Flow rates are in accordance with the EPA Wastewater Treatment Manual for Small Communities, Business, Leisure Centres and Hotels.

The projected total wastewater discharges are indicated in Table 5.1 below:

 Table 5.1 - Hydraulic & Organic loading calculations

Type of Dwelling	Equivalent Persons	Flow (I/day/pers on)*	Hydraulic Loading (I/day)	BOD (g/day/ person)*	Organic Loading (g/day BOD₅)
Ammenity	968	10.2	9,854	12.1	11,726

EPA Wastewater Treatment Manual for Small Communities, Business, Leisure Centres and Hotels.

Design Flow: = 9,854 litres per day

Organic Load: = 11.7 kg (BOD₅)/day

For context, the design flow for 10 average households is approximately 4,200 litres per day** and the organic load is approximately 2.1 kg (BOD₅)/day**.

** Code of Practice: Wastewater Treatment and Disposal Systems Serving Single Houses (p.e. ≤ 10) Chapter 4 recommends a daily hydraulic loading of 150 l/person be used. Table 4.1 gives a typical concentration of BOD5 as 150-500 mg/l. An average household is assumed to have 2.8 persons

All foul drainage shall be constructed in accordance with Greater Dublin Regional Code of Practice for Drainage Works and Irish Water requirements.

Refer to Appendix B for a sketch of Drainage Records provided by South Dublin County Council.

Refer to Appendix C for a copy of the Preconnection Enquiry submitted to Irish Water Refer to Appendix D for water demand calculations

Refer to Drawings DMVC-ROD-Z0-00-DR-C-0030-32 for proposed foul drainage layout

6. SURFACE WATER DRAINAGE

It is proposed to provide new separate surface and foul drainage systems to serve the proposed development. This section outlines the existing surface water drainage services on site and gives our proposals for the additional surface water drainage requirements as part of the development.

6.1 Existing Surface Water Drainage

The site is not served by any existing surface water drainage system and rainfall currently runs off to the road to east of site, to the north of the Massy Woods catchment area.

6.2 **Proposed Surface Water Drainage**

It is proposed to construct a new surface water drainage system for the development to collect runoff from roads, roofs and other hardstanding areas.

Run-off from the visitor centre will be collected and outfall along a stream running north into a new man made pond (Pond A). From this the runoff will zig-zag down the hillside through a series of streams and small shallow ponds (Ponds B and C). A series of bends and natural water slowing obstacles such as rocks, small boulders and railway sleepers will be used to restrict the flow.

The new car park is comprised of three tiers of parking with 275 car spaces and 5 bus spaces. Runoff from the circulation road will flow east into swales / streams running adjacent to the parking tiers. These swales will be small scale and of a similar fashion to the stream from the visitor centre. The swales will flow into a number of small shallow ponds (Ponds F & G). The car parking spaces will be grasscrete permeable paving. This will reduce the runoff from the new car park. More details on grasscrete are contained in Section 6.2.1. A petrol interceptor will be used to capture any pollutants arising from vehicles in the car park.

A drainage ditch will run between the eastern site boundary and the lowest tier of parking. During the public consultation process, a number of local landowner reported that there can be considerable surface water run-off from the hill side at the location of the car park. While this was not observed by the design team, a stream has been provided that extends beyond the end of the proposed car parking as indicated on the drainage drawing. This stream will intercept and collect any additional water running down the hill at this location and provide an additional level of protection to the properties below.

All of the surface will flow into a larger pond located next to the entrance of the site (Pond D). This will connect to a hydrobrake manhole and will be utilised only when the outflow backs up from the hydrobrake.

A hydrobrake manhole will limit the outflow from Pond D to 2.0l/s/ha (Qbar) in accordance with the South Dublin County Council Requirements. This is considerably less than the calculated greenfield runoff rate of 5.54l/s/ha in the 1 in 100 year event. The hydrobrake will discharge through a culverted / piped connection under the existing road (R115) and flow into the Glendoo Brook in Massy's Woods.

The existing road drainage system from the car park entrance north comprises of drainage ditches to either side of the road. It is proposed to retain this system, however, where required gullies will be utilised in certain locations to increase the conductivity of surface water to the drainage ditches.

All surface water drainage shall be constructed in accordance with Greater Dublin Regional Code of Practice for Drainage Works and South Dublin County Council requirements.

Refer to Drawings DMVC-ROD-Z0-00-DR-C-0030-32 for proposed surface water drainage layout

Refer to Appendix G for typical surface water storage details taken from the C753 CIRIA SuDS Manual.

6.2.1 SUDS Approach

This should be read in conjunction with the following:

- *(i)* Appendix *E* Surface Water Storage Calculations
- (ii) Drawings DMVC-ROD-Z0-00-DR-C-0030-32

As part of the development, a number of different SuDS measures are proposed to minimise the impact on water quality and quantity of the runoff and maximise the amenity and biodiversity opportunities within the site. This is in line with the Infrastructure & Environmental Quality (IE) Policy 2 Objective 1 of the South Dublin County Council Development Plan 2016 – 2022 which aims to

"To maintain and enhance existing surface water drainage systems in the County and promote and facilitate the development of Sustainable Urban Drainage Systems (SUDS), including integrated constructed wetlands, at a local, district and County level, to control surface water outfall and protect water quality".

Chapter 6 of the EIAR that was compiled for this development identifies three existing ponds in the area that are suitable habitats for the Common Frog and the Smooth Newt. The ponds have been selected as a Key Ecological Receptor in the EIAR. The new ponds that form the surface water drainage design will provide additional areas for these species and may have an ecological benefit to the site. The construction and operation of the proposed development will maintain a drainage neutral situation. Thus, there will be no indirect impacts on sensitive aquatic environments.

The proposed SuDS measures will include a combination of Source Control, Site Control and Regional Control measures as part of a Management Train whereby the surface water is managed locally in small sub-catchments rather than being conveyed to and managed in large systems further down the catchment. The combination of the SuDS measures outlined below will maximise the potential for surface water infiltration to the subsoil, reducing the impact on the existing surface water drainage network downstream.

It is proposed to provide the following SuDS measures:

- 1) Grasscrete
- 2) Ponds

Grasscrete

It is proposed to provide a grasscrete finish to the parking spaces. Grasscrete is a type of permeable paving which allows penetration of groundwater to the storage layers below. A total of 275 number parking spaces will be provided as part of the proposed development. A stone storage layer will be provided below the surface of the grasscrete parking spaces. This storage layer has been sized to provide storage for the surface water runoff from the parking spaces for a 1 in 100 year rainfall event including a 20% increase in rainfall depth to account for climate change. The storage layer will be a total of 500mm deep and will have a voids ratio of 30%. This storage layer will provide 475m³ of storage which exceeds the 410m³ required for the 1 in 100 year event. The water will make its way through the ground and via filter drains to the swales / streams.

Ponds

In total 6 ponds will be required to store the runoff. These are spread across the site and are of varying areas. It is important that the total storage capacity of the ponds meets the site outflow (ie. 792.0 cu. m). A table of the proposed pond dimensions is shown below in Table 6.1

Pond	Pond Volume (m ³)	
А	187	
В	38	
с	38	
D	326	
E	0	
F	66	
G	137	
Total Volume	792	
Required Volume	792	

Table 6.1 – Pond Schedule

* Pond E no longer used

The ponds will be manmade but will have a "natural feel" to suit the surrounding woodland area. It is envisaged that the runoff will flow into these ponds sequentially during rainfall. The ponds will be constructed with gently side slopes (1:3) may operate as recreational areas during dry periods, although a level of standing water may be kept if conditional. The depths of the ponds have been kept shallow to promote use during dry periods.

The total storage volume provided in the basin is 792.0 cu. m which meets the level of storage required for a 1 in 100 year rainfall event including a 10% increase in rainfall intensity to account for climate change.

Green Roofs

Green Roofs comprise a multi-layered system which covers the roof of a building with vegetation and landscaping over a drainage layer. They are designed to intercept and retain precipitation which reduces the volume and rate of surface water runoff. It is proposed to provide green roofs to a proportion of the roof area of apartment buildings. The roof area of the apartment buildings will be approximately 30% green roof. Residual runoff from the green roofs will be discharged to the surface water drainage network.

6.3 Flood Risk Assessment

The site slopes steeply to the east at an approximate gradient of 1:4.5. Although, the site receives a high volume of rainfall, the low permeability of the soil and the steep gradient of the site results in rainfall running off to the road to east of site, to the north of the Massy's Woods catchment area. The rainfall flows into the Glendoo Brook; this is an open stream that runs in a northerly direction through the site, along the eastern boundary of Massy's Woods. This river is one of the headwaters of the Owendoher River, a significant river in south Dublin.

The new visitor centre is at a level of 296m OD. The existing car park is at a level of 268m OD. The northern section of Massy's Woods is at a level of approximately 261m OD and falls to steeply approaching the Glendoo Brook.

The main construction elements of the project, the visitor centre and car park are approximately 400m from this watercourse. No works are proposed in the vicinity of the watercourse. The OPW Preliminary Flood Risk Assessment (PFRA) maps have been consulted to identify the fluvial and pluvial flood extents of the watercourse. The footprint from the *Fluvial – Indicative 1% AEP (100-yr) Event* for the Glendoo Brook was examined and as mentioned above is approximately 400m from the construction elements of the project. A *Pluvial – Indicative 1% AEP (100-yr) Event* is shown approximately 500m from the visitor centre but at a lower level.

The information provided in this section identifies that there is an extremely low risk of Fluvial or Pluvial flooding arising from this development.

Refer to Appendix F for the OPW Preliminary Flood Risk Assessment (PFRA) maps

7. SUMMARY

- Water will be supplied to the development from the existing water supply at Stocking Lane approximately 1km from the site.
- Separate foul and surface water drainage systems will be constructed to serve the site.
- The foul network serving the site will discharge to the existing foul network at Woodstown Village approximately 2km from the site.
- The site will incorporate SuDS measures promoting treatment of surface water prior to discharge.
- Any excess surface water from the site which doesn't infiltrate to the subsoil will be collected and attenuated within the SUDS measures on site before discharging to the open stream at the east of the site.
- Storage will be provided below the grasscrete finish on the car parking spaces to attenuate the surface water runoff from the car park.

APPENDIX A SITE GEOLOGY

Copyright Ordnance Survey Ireland/Government of Ireland, DCENR, GSI. Ordnance Survey Ireland Licence No. EN 0047215

Arena House, Arena Road, Sandyford, Dublin 18.Tel:+353 1 294 0800Fax:+353 1 294 0820e-mail:info@rod.ieWebsite:www.roughanodonovan.com

Civil - Structural - Transportation - Environmental

Dublin Mountains Visitor Centre Preliminary Ground Investigation

1. Introduction

This technical paper has been prepared to outline the preliminary ground investigations undertaken for Dublin Mountains Visitor Centre project. Six trial pits were undertaken by a contractor appointed by Coillte with visual inspections carried out by ROD on the 10th December 2015.

2. Trial Pit Log

Six trial pits in total were undertaken. Two trial pits were excavated in Massey's Wood to investigate the suitability of the area for on-site disposal of wastewater. Two trial pits were also excavated at the location of the proposed car park and two at the location of the proposed buildings to investigate the type of soil and depth to bedrock in these locations. The location of each trial pit is shown on the location plan in appendix A. Table 2.1 summarises the findings of each trial pit.

Trial Pit	Depth (m)	Predominant Soil Type	Comments
TP101	1.5m	Clay	Likely to have poor infiltration rates.
TP102	1.7m	Clay	Likely to have poor infiltration rates.
TP103	1.6m (rock encountered)	Sand	At proposed car park.
TP104	1.4m	Sand	At proposed car park.
TP105	1.2m (rock encountered)	Sand	At location of proposed building.
TP106	0.9m (rock encountered)	Sand	At location of proposed building.

Table 2.1 – Trial Pit Summary

Photographs of each trial pit, including the base of the pit, the side of the excavation and the excavated material were taken for each trial pit. Refer to Appendix B for the photographs of each trial pit.

3. Conclusions

The trial pits undertaken indicate that rock is relatively close to the surface at the location of the proposed building. The subsoil in this area and at the location of the proposed car park consists predominantly of sand. The depth to rock at the proposed car park is approximately 1.6m. In Massey's Wood, the subsoil is predominantly clay, indicating that it will have poor infiltration rates. Bedrock was not encountered in the trial pits in Massey's Wood.

David Fahey, Engineer, Roughan & O'Donovan Consulting Engineers.

Appendix A – Trial Pit Location Plan

Appendix B – Trial Pit Photos

Trial Pit Ground Investigations – 10th December 2015

TP101

TP105

APPENDIX B DRAINAGE AND WATERMAIN RECORDS

NOT TO SCALE - SKETCH ONLY

Consulting Engineers Civil - Structural - Environmental

> Arena House, Arena Road, Sandyford, Dublin 18. Tel : +353 1 2940800 e-mail : info@rod.ie www.rod.ie

DO NOT SCALE USE FIGURED DIMENSIONS ONLY

APPENDIX C COPY OF PRECONNECTION ENQUIRY FORM

Pre-connection enquiry form

Industrial and commercial developments, mixed use

developments, housing developments, business developments

This form is to be filled out by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure. If completing this form by hand, please use BLOCK CAPITALS and black ink.

Please refer to the **Guide to completing the pre-connection enquiry form** on page 12 of this document when completing the form.

Section A | Applicant details

1 WPRN number (where available):

2 Applicant details:

Applicant uctan	5.																								
Registered compa	any	nan	ne (i	if ap	plic	able	e):]		ļ]				1			
]								1		1	}	1	T		I]	1	1
Trading name (if a	appl	icat	ole):]]]	1	1]			1
]]			1]	1		1]	T	
Company registra	tior	าทม	mb	er (i	fap	plic	able	2):	[]	T		- <u>-</u>	1		<u> </u>	1	1	7					<u> </u>	
If you are not a reg	giste	erec	l co	mpa	iny/	bus	ines	55, p	lea	se p	rovi	de	the a	appl	icai	nt's .	nan	ne:	_						
SOUTH	<u> </u>	0	ŭ	ß	L	1	Ň		C	0	1	$\left \mathcal{N} \right $	Γ	Ч		C	0	L.	N)	6	1	4		1]
Contact name:	[]			<u> </u>			1]]					1	T		
Postal address:	\boxed{c}	0	l.	6.19	7	-7		Ļ,	A	L	2	Ī	T	A	11) (.,	A	G	11	5		-'[7	1	1
PUBLI	ŝ	2	4]	р	2	4	Y	N	N	5]]				<u> </u>]	1	
]]]]			[]	}						1]	
Eircode:	D	12	4	Y	N	N	5												· ·	•			•	· · · ·	
Telephone:	6	1	14	1	4	q	0	0	0		}]	[·		
Mobile:	[1]		[·	<u> </u>]								
Email:		N	F	Ø	Ø	S	ρ	Ĉ	C	-	1	E	1	1]	Ţ				1			
Agent details (if a	app	lica	ble)):																					
Contact name:	11	1	1	12	10	1]	6	In	1	6	10		~	<u>.</u>	[(<u> </u>	<u> </u>		Ţ-:—]	·[]	7	

 Contact name:	K	ļi	E	R	μA	N	ļ	0	<u> p</u>	5	Ő	Ŕ	0	A	N		L			<u> </u>			}		
 Company name (i	if ap	plic.	able	e):	R	ò	u	G	Ч	A	N	k	Ø	ю	0	N	0	Įν	Α	N	<u> </u>]	<u> </u>		[
 Postal address:	A	Ę	F	N	A	}	11	0	lu	5	Ę					[]					
ARENA)	P	þ	Α	Ø	<u> </u>			<u> </u>	<u> </u>			<u> </u>				1]			*****		[··
SAWDY	[**	Ĉ	R	φ.]	0	u	ß	Ĺ	ł	N	موتشانات	8				}]				(******		
Eircode:	ρ	1	8	V	8	P	6																		
Telephone:	0	ļ	2	Cį	Ĺŗ	0	8	0	0		1]		··										
Email:	i	'n	Ŧ.	6	Ø	5	0	£	r		c								[[]				

1 IW/EF/NC/8/0417

3

Section C | Water connection and demand details

14	Is there an existing connection to public water mains at the site?	Yes	No
15	Is this enquiry for an additional connection to the one already installe	d? Yes	No
16	Is this enquiry to increase the size of an existing water connection?	Yes	No
17	Is this enquiry for a new water connection?	Yes 🖊	No
18	Approximate date water connection is required:	01/05/2	019

19 Please indicate pre-development water demand (if applicable):

Pre-development peak hour water demand	0	l/s
Pre-development average hour water demand	0	l/s

Pre-development refers to brownfield sites only. Please include calculations on the attached sheet provided.

20 Please indicate the domestic water demand (housing developments only):

Post-development peak hour water demand	l/s
Post-development average hour water demand	l/s

Please include calculations on the attached sheet provided.

21 Please indicate the business water demand (shops, offices, schools, hotels, restaurants, etc.):

Post-development peak hour water demand	0.15	l/s
Post-development average hour water demand	0.12.	l/s

Please include calculations on the attached sheet provided. Where there will be a daily/weekly/seasonal variation in the water demand profile, please provide all such details.

22 Please indicate the industrial water demand (industry-specific water requirements):

Post-development peak hour water demand	l/s
Post-development average hour water demand	l/s

Please include calculations on the attached sheet provided. Where there will be a daily/weekly/seasonal variation in the water demand profile, please provide all such details.

23 What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?

What is the highest finished floor level of the proposed development above Malin Head Ordnance Datum? 24

2 02 m

36 Please indicate the industrial wastewater hydraulic load (industry-specific discharge requirements):

Post-development peak discharge	l/s
Post-development average discharge	l/s

Please include calculations on the attached sheet provided.

37 Wastewater organic load:

Characteristic	Max concentration (mg/l)	Average concentration (mg/l)	Maximum daily load (kg/day)
Biochemical oxygen demand (BOD)	500	325	40022 3202
Chemical oxygen demand (COD)			
Suspended solids (SS)	700	450	4434.3
Total nitrogen (N)	80	51	503
Total phosphorus (P)	20	12.5	123
Other			

Temperature range				
pH range	Sugar Sugar	NET BOUL IN STAT	and the second	

38 Storm water run-off will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer. In the case of such brownfield sites, please indicate if the development intends discharging surface water to the combined wastewater collection system:

Yes	

Yes

No /

No

m

If 'Yes', please give reason for discharge and comment on adequacy of SUDS/attenuation measures proposed.

Please submit detailed calculations on discharge volumes, peak flows and attenuation volumes with this application.

39 Do you propose to pump the wastewater?

If 'Yes', please include justification for your pumped solution with this application.

- 40 What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?
- 41 What is the lowest finished floor level on-site above Malin Head Ordnance Datum? 3 0 2

Section F | Supporting documentation

Please provide the following additional information:

- Site location map: A site location map to a scale of 1:1000, which clearly identifies the land or structure to which the enquiry relates. The map shall include the following details:
- a) The scale shall be clearly indicated on the map.
- b) The boundaries shall be delineated in red.
- c) The site co-ordinates shall be marked on the site location map.
- Details of planning and development exemptions (if applicable).
- > Calculations (calculation sheets provided below).
- Site layout map to a scale of 1:500 showing layout of proposed development, water network and wastewater network layouts, additional water/wastewater infrastructure if proposed, connection points to Irish Water infrastructure (if known).
- All design submissions as outlined in the Irish Water Codes of Practice for Water Infrastructure and the Irish Water Codes of Practice for Wastewater Infrastructure, including the layout of all other services to be provided within the site (for example: gas, electricity, telecommunications).
- > Any other information that might help Irish Water assess this pre-connection enquiry.

Section G | Declaration

I/We hereby make this application to Irish Water for a water and/or wastewater connection as detailed on this form.

I/We understand that any alterations made to this application must be declared to Irish Water.

The details that I/we have given with this application are accurate.

I/We have enclosed all the necessary supporting documentation.

Signature: Nen 012017 Date: 22/06/2017	
---	--

Your full name (in BLOCK CAPITALS):

KIERAN ORJORDAW

Irish Water will carry out a formal assessment based on the information provided on this form. Any future connection offer made by Irish Water will be based on the information that has been provided here.

Please submit the completed form to newconnections@water.ie or alternatively, post to:

- Irish Water
- PO Box 860
- South City Delivery Office
- Cork City

		 ······································	
For office use only:			
Input customer numb	er:		

WATER DEMAND

Predicted Visitors

.

Annual Visitors	300,000
Peak Weekly use factor ¹	0.02
Peak Weekly use	5,769
Peak Day factor ²	0.14
Peak daily use (persons)	824

Estimated person use

	Flow litres/day per person 5	BODS grams/day per person ⁵
Restraunt	15	15
Bar drinkers	10	10
Bar Staff	60	30
Toilet blocks (per use)	5	10

water requirement

	% of visitors using	Persons using each	Flow litres/day	BODS grams/day
restraunt	0.4	330	4945	4945
bar	0.15	124	1236	1236
staff	A TOOL OF THE REAL PROPERTY OF THE	20	1200	600
toilet		495	2473	4945
Total Out	Total Out	968	9854	11726
Out Out		Average (per hour)	411	489
	Out	Normal (per hour over 8 hour period)	1232	1466
		Peak	513	611
The state of the second second		and have a second some of the second s		
Additional for drinking wate	r the second second second		824	
Total In		EN HOUSENS INCOMENDATION AND A SUBJECT OF	10678	1
		Average (per hour)	445	1
In	In	Normal (per hour over 8 hour period)	1335	
		Beak	ECC.	1

٩,

Additional for drinking water

visitors.	824
(/visitor	1
demand per day	824.18
demand per hour	103.02

- 103.02
 - 1 Assume even distribution of visitors across weeks.
 - 2 Assume even distribution of visitors across days. 3 Financial Plan - Table 4.2

- 4 Toilet use assumed to be total visitors minus visitors using restraunt. 5 Waste Water Treatment Manual Table 3
- 6 Assume 11 per person as drinking water

AVERAGE DEMAND = 445 L/May = 0.12 L/S PEAK DEMAND = 556 L/hour = 0.15 L/S.

On-site storage

. . .

NA	
Fire flow requirements	
M	
STORAGE REQUIRED - ASSUME REQUIRED => STORAGE =	FOR 1 HOURS. FLOW OF 1000L/MINUTE = 1000 60 L/s = 16.7 L/s. 1000(10) = 60,000 L
TANK UOI	$ume = 60m^3$

Flow balancing and pumping

1

8.,

.....

Question 19: If the site was previously in use, please provide details of the pre-development peak hour and average hour water demand.

- **Question 20:** Please provide calculations for domestic water demand and include your calculations on the calculation sheet provided. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). For design purposes, please refer to the Irish Water Codes of Practice for Water Infrastructure.
- Question 21: If this connection enquiry concerns a business premises, please provide calculations for the water demand and include your calculations on the calculation sheet provided. Business premises include shops, offices, hotels, schools, etc. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). For design purposes, please refer to the trish Water Codes of Practice for Water Infrastructure.
- **Question 22:** If this connection enquiry is for an industrial premises, please calculate the water demand and include your calculations on the calculation sheet provided. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (I/s). The peak demand for sizing of the pipe network will be as per the specific business production requirements. For design purposes, please refer to the Irish Water Codes of Practice for Water Infrastructure.
- Question 23: Please specify the ground level at the location where connection to the public water mains will be made. This is required in order to determine if there is sufficient pressure in the existing water infrastructure to serve your proposed development. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 24:** Please specify the highest finished floor level on-site. This is required in order to determine if there is sufficient pressure in the existing water infrastructure to serve your proposed development. Levels should be quoted in metres relative to Malin Head Ordnance Datum.

Question 25: If storage is required, water storage capacity of 24-hour water demand must usually be provided at the proposed site. In some cases, 24-hour storage capacity may not be required, for example 24-hour storage for a domestic house would be provided in an attic storage tank. Please calculate the 24-hour water storage requirements and include your calculations on the attached sheet provided. Please also confirm that on-site storage is being provided by ticking the appropriate box.

Question 26: The water supply system shall be designed and constructed to reliably convey the water flows that are required of the development including fire flow requirements by the Fire Authority. The Fire Authority will provide the requirement for fire flow rates that the water supply system will have to carry. Please note that while flows in excess of your required demand may be achieved in the Irish Water network and could be utilised in the event of a fire, Irish Water cannot guarantee a flow rate to meet your fire flow requirement. To guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development. Please include your calculations on the attached sheet provided, and further provide confirmation of the Fire Authority requirements.

Question 27: Please identify proposed additional water supply sources, that is, do you intend to connect to the public water mains or the public mains and supplement from other sources? If supplementing public water supply with a supply from another source, please provide details as to how the potable water supply is to be protected from cross contamination at the premises.

Section D | Wastewater connection and discharge details

Question 28: Please Indicate if a wastewater connection to a public sewer already exists for this site.

- Question 29: Please indicate if this enquiry relates to an additional wastewater connection to one already installed.
- **Question 30:** Please indicate if you are proposing to upgrade the wastewater connection to facilitate an increased discharge. Irish Water will determine what impact this will have on our infrastructure.
- Question 31: Please indicate if this enquiry relates to a new wastewater connection for this site.
- **Question 32:** Please specify the approximate date that the proposed connection to the wastewater infrastructure will be required.
- Question 33: If the site was previously in use, please provide details of the pre-development peak and average wastewater discharge.

Ordnance Survey Ireland Licence No. EN 0006514 J:12015/15189/02 Dwg/05 Planning/DMVC-ROD-O-DR-XX-ZO-0001.dwg
© Ordnance Survey Ireland/Government of Ireland.

APPENDIX D FOUL WATER / WATERMAIN DEMAND

Predicted Visitors

Annual Visitors	300,000
Peak Weekly use factor ¹	0.02
Peak Weekly use	5,769
Peak Day factor ²	0.14
Peak daily use (persons)	824

Estimated person use

	Flow litres/day per person ⁵	BOD5 grams/day per person ⁵
Restraunt	15	15
Bar drinkers	10	10
Bar Staff	60	30
Toilet blocks (per use)	5	10

water requirement

	% of visitors using ³	Persons using each	Flow litres/day	BOD5 grams/day
restraunt	0.4	330	4945	4945
bar	0.15	124	1236	1236
staff		20	1200	600
toilet ⁴		495	2473	4945
Total Out	Total Out	968	9854	11726
		Average (per hour)	411	489
Out	Out	Normal (per hour over 8 hour period)	1232	1466
		Peak per hour	513	611
Additional for drinking water			824	
Total In			10678	
		Average (per hour)	445	
In	In	Normal (per hour over 8 hour period)	1335	
		Peak hour	556	
		Average (per second)	0.12	7
		Peak per second	0.15	

Additional for drinking water

visitors	824
l/visitor	1
demand per day	824.18
demand per hour	103.02

1 Assume even distribution of visitors across weeks.

2 Assume even distribution of visitors across days.
3 Financial Plan - Table 4.2
4 Toilet use assumed to be - total visitors minus visitors using restraunt.
5 Waste Water Treatment Manual Table 3
6 Assume 11 per person as drinking water

APPENDIX E SURFACE WATER STORAGE CALCULATIONS

		Member/Location:												Sheet No:
LKUU		Location:	D. I. II.											
ROUGHAN & O'DONOVAN		Location	Details											X
Consulting Engineers Civil - Structural - Transpo	ortation -Environmental												Calcs by:	Checked by:
Job Title:	Job no:												XX	XX
Broject Name	~~~~~												Date:	Date:
rioject Name													XX/XX/XXXX	XX/XX/XXXX
Ref.							Calculation	5						Output
													_	
				AI	LLOWAI	BLE OU [.]	TFLOW F	ROM CA	ТСНМЕ	NT				
			Notes:									1		
			If AREA < 50hect	tares, QBAR = 0.0	0108 x (AREA	4)^0.89 x (SAA	R)^1.17 x (SOIL	.)^2.17 (Insti	tute of Hydro	ology Report No. 12	4)			
			Use min AREA 5	Ohectares (GDSDS	5 Volume 2 Se	ection 6.3.1.2	.2)							
			If AREA > 50hect	tares, QBAR = 0.0	0066 x (AREA	4)^0.92 x (SAA	R)^1.22 x (SOIL	.)^2.00 (Floo	d Studies Sup	oplementary Repor	t No. 6)			
			User input requ	ired in cells mark	ed vellow									
			oser input lega									J		
		Area =	0.18	hectares										
		Catchment	Catchment	Catchment					Return	Growth Curve	Modified	Allowable Outflow		
		Area	Area	Area	SAAR	SOIL	QBAR m^3/sec	QBAR	Period	Factor	QBAR	per Hectare		
		500,000	0.500	50.000	800	0.30	0.1065	106.53	1	0.85	90.55	1.81		
		500,000	0.500	50.000	800	0.30	0.1065	106.53	QBAR	1.00	106.53	2.13		
		500,000	0.500	50.000	800 800	0.30	0.1065	106.53	30	2.09	223.11	3.62		
		500,000	0.500	50.000	800	0.30	0.1065	106.53	100	2.60	277.19	5.54		
		500,000	0.500	50.000	800	0.30	0.1065	106.53	200	2.89	308.32	6.17		
		L											J	

FIROD		Member / Loo	cation:																			Sheet no:
ROUGHAN & O'DONOVAN		Loc	ation Details																			X
Consulting Engineers	nvironmental																			Calcs by:		Checked by:
Job Title:	Job no:	-																		XX		xx
PROJECT TITLE	XX.XXX																			Date:	'¥	Date:
Ref:		1		-	-					Calcula	ions			-							.^	Output
								s	urface Wa	ter Atte	nuatior	& Stor	age									
	Total Area to be I	Drained	1,850	Sq m	Ser INPL	2	Day M5 (mm)=	101.90			Storage	C = Q*TS ·	P*(TS + TC) + P^2*T(C/Q						
	Impermeability Fac Storm Return Perio Allowable Dischar	ctor od T rge <u>per hectare</u>	1.00 100 2.13	Yrs I/s		Ratio 60 f Im Allowable D	Vinute M5/2 D permeable Are Discharge	ayM5 r na P	0.21 1850 0.02	Sq m Cu m/min		W = LN(1 X = LN(7 Y = LN(4 Z = LN(7)	1.06 * M5-6 21/(1 + 15 8 * r/1.06)	0/(48*r)) * D))		Cr = J0 + J1	1 * (M5-D) + J2 //5-D)) = Cr * (L	.* (M5-D)^2 _N(T) - 1.5)				
	Time of Concentra		0.00				Storage Ever	it	Maximum Event			LN(M5-D)) = LN(D) +	W + (X * Y)	z							
	Time of Storm	Time of Storm	Time of Concentration	w	x	×	7	LN(D)	LN(M5-D)	M5-D	Rainfall Intensity	.10	.11	.12	Gr	M100-D	Rainfall Intensity +10%	Discharge to Storage	Discharge to Storage	Storage Required		
	Minutes 3	Hours 0.050 0.083	Minutes 8.0	0.811	6.021	2.271	3.808	-2.996	1.406	mm 4.079 5.852	mm/hr 81.579 70.225	0.165	0.008	-0.000305	0.194	mm 7.443	mm/hr 163.756	I/s 84.152 74.587	Cu.m/min 5.049	Cu. m 14.89 22.07		
	7 10	0.117 0.167	8.0 8.0 8.0	0.811 0.811 0.811	5.569 5.328	2.271 2.271	3.808 3.808	-2.465 -2.148 -1.792	1.984	7.269 8.993	62.305 53.959	0.165	0.008	-0.000305 -0.000305	0.209 0.215	13.920 17.537	131.250 115.742	67.448 59.479	4.047 3.569	27.97 35.26		
	13 16	0.217 0.267	8.0 8.0	0.811 0.811	5.134 4.971	2.271 2.271	3.808 3.808	-1.529 -1.322	2.343 2.454	10.413 11.632	48.060 43.621	0.165 0.165	0.008	-0.000305 -0.000305	0.219 0.220	20.523 23.066	104.192 95.148	53.543 48.895	3.213 2.934	41.27 46.37		
	20 25	0.333	8.0 8.0	0.811	4.789 4.600	2.271	3.808 3.808	-1.099 -0.875	2.568	13.042 14.563	39.127 34.951	0.235	-0.001 -0.001	-0.000017	0.222	25.978 28.837	85.729 76.130	44.055 39.122	2.643 2.347	52.21 57.91		
	30 45	0.500 0.750	8.0 8.0	0.811 0.811	4.441 4.075	2.271 2.271	3.808 3.808	-0.693 -0.288	2.766 2.953	15.894 19.173	31.788 25.564	0.235	-0.001 -0.001	-0.000017 -0.000017	0.218 0.214	31.305 37.237	68.871 54.614	35.392 28.066	2.124 1.684	62.81 74.53		
	60 75	1.000 1.250	8.0 8.0	0.811 0.811	3.808 3.597	2.271 2.271	3.808 3.808	0.000	3.082 3.179	21.800 24.034	21.800 19.228	0.235 0.235	-0.001 -0.001	-0.000017 -0.000017	0.210 0.206	41.832 45.623	46.015 40.148	23.647 20.632	1.419 1.238	83.52 90.88		
	90 105	1.500 1.750	8.0 8.0	0.811 0.811	3.424 3.276	2.271 2.271	3.808 3.808	0.405 0.560	3.258 3.324	26.001 27.771	17.334 15.869	0.250 0.250	-0.002 -0.002	0.000012	0.204 0.201	48.923 51.837	35.877 32.583	18.437 16.744	1.106 1.005	97.24 102.82		
	120 135	2.000	8.0 8.0	0.811	3.147 3.032	2.271 2.271	3.808 3.808	0.693 0.811	3.381 3.430	29.390 30.887	14.695 13.728	0.250	-0.002 -0.002	0.000012	0.199	54.469 56.878	29.958 27.807	15.395 14.290	0.924	107.82 112.37		
	150	2.500	8.0	0.811	2.930	2.271	3.808	0.916	3.475	32.284	12.914	0.250	-0.002	0.000012	0.195	59.106 61.183	26.007	13.364	0.802	116.55		
	180	3.000	8.0	0.811	2.752	2.271	3.808	1.099	3.551	34.840	11.613	0.250	-0.002	0.000012	0.191	63.133	23.149	11.896	0.714	124.04		
	240 300	4.000	8.0 8.0	0.811	2.470 2.250	2.2/1 2.271	3.808 3.808	1.386	3.670	39.258 43.042	9.814 8.608	0.250	-0.002	0.000012	0.186	09.967 75.717	19.241	9.888 8.560	0.593	136.52		
	360 420	6.000 7.000	8.0 8.0	0.811 0.811	2.070 1.917	2.271 2.271	3.808 3.808	1.792 1.946	3.837 3.900	46.390 49.415	7.732 7.059	0.250 0.250	-0.002 -0.002	0.000012 0.000012	0.178 0.176	80.742 85.245	14.803 13.396	7.607 6.884	0.456 0.413	155.62 163.36		
	480 540	8.000 9.000	8.0 8.0	0.811 0.811	1.785 1.668	2.271 2.271	3.808 3.808	2.079 2.197	3.955 4.003	52.188 54.760	6.524 6.084	0.227 0.227	-0.001 -0.001	0.000003	0.173 0.171	89.340 93.097	12.284 11.379	6.313 5.847	0.379	170.28 176.51		
	600	10.000	8.0	0.811	1.563	2.271	3.808	2.303	4.046	57.164 59.427	5.716	0.227	-0.001	0.000003	0.169	96.572 99.810	10.623	5.459	0.328	182.16		
	720	12.000	8.0	0.811	1.382	2.271	3.808	2.485	4.120	61.570	5.131	0.227	-0.001	0.000003	0.165	102.847	9.428	4.845	0.291	192.09		
	780 840	13.000 14.000	8.0 8.0	U.811 0.811	1.303 1.229	2.271 2.271	3.808 3.808	2.565 2.639	4.153 4.183	63.608 65.554	4.893 4.682	0.227	-U.001 -0.001	0.000003	0.164 0.162	105.712 108.425	8.945 8.519	4.597 4.378	0.276	196.50 200.61		
	900 960	15.000 16.000	8.0 8.0	0.811 0.811	1.160 1.096	2.271 2.271	3.808 3.808	2.708 2.773	4.211 4.237	67.418 69.209	4.495 4.326	0.227 0.227	-0.001 -0.001	0.000003	0.161 0.159	111.006 113.469	8.140 7.801	4.183 4.009	0.251 0.241	204.44 208.04		
	1020	17.000	8.0	0.811	1.035	2.271	3.808	2.833	4.262	70.934	4.173	0.227	-0.001	0.000003	0.158	115.827	7.495	3.851	0.231	211.42		
	1140	19.000	8.0	0.811	0.925	2.271	3.808	2.090	4.307	74.210	3.906	0.227	-0.001	0.000003	0.155	120.266	6.963	3.578	0.215	217.61		
	1400 1700	23.333 28.333	8.0 8.0	U.811 0.811	0.720 0.526	2.271 2.271	3.808 3.808	3.150 3.344	4.390 4.469	80.658 87.260	3.457 3.080	0.227	-U.001 -0.001	0.000003	0.151 0.147	128.873 137.527	6.075 5.339	3.122	0.187 0.165	228.98 239.50	J	
	INCREASE TIM	ME OF STORM 1	TO DETERMINE N	AXIMUM S	STORAGE E	VENT	I							MAXIM	IUM ST	ORAGE	REQUIRE	D (Cu. M)) =	239.50		

		Member / Loc	ation:										_									Sheet no:
ROUGHAN & O'DONGVAN		Loca	ition Details																			x
Consulting Engineers	n -Environmental																			Calcs by:		Checked by:
Job Title:	Job no:																			XX		xx
PROJECT TITLE	XX.XXX																			Date:		Date:
Ref:										Calculat	tions									\$\$,\$\$,	<u>×</u>	Output
								s	urface Wa	iter Atte	nuation	& Stor	age								1	
							_						uge									
				U	ser INPl	JT		_				Storage	C = Q*TS	P*(TS + TC) + P^2*T	C/Q						
	Total Area to be D Impermeability Fac Storm Return Perio	Drained tor od T	915 1.00 100	Sq m Yrs		2 Ratio 60 Im	2 Day M5 (mm Minute M5/2 D Ipermeable Ar	n)= 0ayM5 r ea	101.90 0.21 915	mm Sqm		W = LN(1 X = LN(7	1.06 * M5-6 21/(1 + 15	0/(48*r)) * D))		Cr = J0 + J1	1 * (M5-D) + J2	2 * (M5-D)^2				
	Allowable Dischar Time of Concentra	ge <u>per hectare</u> tion TC	2.13 8.00	l/s min		Allowable I	Discharge 60 Minute M Storage Ever	P 5 nt	0.01 21.80 Maximum Event	Cu m/min mm		Y = LN(4) Z = LN(7) LN(M5-D)	8 * r/1.06) 21/16)) = LN(D) +	W + (X * Y)	Z	LN((MT-D)/N	45-D)) = Cr * (L	LN(T) - 1.5)				
	Time of Storm	Time of Storm	Time of	r							Rainfall						Rainfall	Discharge	Discharge	Storage		
	TS Minutes	D Hours	Concentration TC Minutes	w	x	Y	z	LN(D)	LN(M5-D)	M5-D	Intensity mm/hr	JO	J1	J2	Cr	M100-D	Intensity +10% mm/hr	to Storage	to Storage Q Cu.m/min	Required C Cu. m		
	3 5 7	0.050 0.083 0.117	8.0 8.0 8.0	0.811 0.811 0.811	6.021 5.770 5.569	2.271 2.271 2.271	3.808 3.808 3.808	-2.996 -2.485 -2.148	1.406 1.767 1.984	4.079 5.852 7.269	81.579 70.225 62.305	0.165 0.165 0.165	0.008 0.008 0.008	-0.000305 -0.000305 -0.000305	0.194 0.203 0.209	7.443 10.996 13.920	163.756 145.142 131.250	41.621 36.890 33.359	2.497 2.213 2.002	7.36 10.92 13.84		
	10 13	0.167 0.217	8.0 8.0	0.811 0.811	5.328 5.134	2.271 2.271	3.808 3.808	-1.792 -1.529	2.196 2.343	8.993 10.413	53.959 48.060	0.165 0.165	0.008 0.008	-0.000305 -0.000305	0.215 0.219	17.537 20.523	115.742 104.192	29.418 26.482	1.765 1.589	17.44 20.41		
	16 20	0.267	8.0 8.0	0.811	4.971 4.789	2.271 2.271	3.808	-1.322	2.454 2.568	11.632	43.621 39.127	0.165	0.008	-0.000305	0.220	23.066 25.978	95.148 85.729	24.183 21.789	1.451	22.94 25.82		
	30	0.417	8.0	0.811	4.600	2.271	3.808	-0.875	2.678	14.563	34.951 31.788	0.235	-0.001	-0.000017	0.220	28.837 31.305	68.871	19.350	1.161	28.64 31.06		
	45 60	0.750	8.0 8.0	0.811 0.811	4.075 3.808	2.271 2.271	3.808 3.808	-0.288 0.000	2.953 3.082	19.173 21.800	25.564 21.800	0.235	-0.001 -0.001	-0.000017 -0.000017	0.214 0.210	37.237 41.832	54.614 46.015	13.881 11.696	0.833	36.86 41.31		
	75 90	1.250 1.500	8.0 8.0	0.811 0.811	3.597 3.424	2.271 2.271	3.808 3.808	0.223	3.179 3.258	24.034 26.001	19.228 17.334	0.235 0.250	-0.001 -0.002	-0.000017 0.000012	0.206	45.623 48.923	40.148 35.877	10.204 9.119	0.612 0.547	44.95 48.10	1	
	105 120	1.750	8.0 8.0	0.811	3.276	2.271	3.808 3.808	0.560	3.324 3.381	27.771 29.390	15.869 14.695	0.250	-0.002	0.000012	0.201	51.837 54.469	32.583 29.958	8.282 7.614	0.497	50.85 53.33		
	135	2.250	8.0 8.0	0.811	3.032	2.271	3.808	0.811	3.430 3.475	30.887 32.284	13.728	0.250	-0.002	0.000012	0.197	56.878 59.106	27.807	7.068	0.424	55.58 57.64		
	165	2.750	8.0	0.811	2.837	2.271	3.808	1.012	3.514	33.598	12.217	0.250	-0.002	0.000012	0.193	61.183	24.473	6.220	0.373	59.56		
	240	4.000	8.0	0.811	2.470	2.271	3.808	1.386	3.670	39.258	9.814	0.250	-0.002	0.000012	0.191	69.967	19.241	4.890	0.293	67.52		
	300 360	5.000 6.000	8.0 8.0	0.811 0.811	2.250 2.070	2.271 2.271	3.808 3.808	1.609	3.762 3.837	43.042 46.390	8.608 7.732	0.250	-0.002 -0.002	0.000012 0.000012	0.182 0.178	75.717 80.742	16.658 14.803	4.234 3.762	0.254	72.61 76.97		
	420 480	7.000 8.000	8.0 8.0	0.811 0.811	1.917 1.785	2.271 2.271	3.808 3.808	1.946 2.079	3.900 3.955	49.415 52.188	7.059 6.524	0.250 0.227	-0.002 -0.001	0.000012 0.000003	0.176 0.173	85.245 89.340	13.396 12.284	3.405 3.122	0.204 0.187	80.80 84.22	1 '	
	540	9.000	8.0	0.811	1.668	2.271	3.808	2.197	4.003	54.760	6.084	0.227	-0.001	0.000003	0.171	93.097	11.379	2.892	0.174	87.30	'	
	660	11.000	8.0	0.811	1.469	2.271	3.808	2.398	4.085	59.427	5.402	0.227	-0.001	0.000003	0.167	99.810	9.981	2.537	0.152	92.65		
	720 780	12.000 13.000	8.0 8.0	0.811 0.811	1.382	2.271 2.271	3.808 3.808	2.485 2.565	4.120 4.153	61.570 63.608	5.131 4.893	0.227 0.227	-0.001 -0.001	0.000003	0.165 0.164	102.847 105.712	9.428 8.945	2.396 2.273	0.144 0.136	95.01 97.19	'	
	840 900	14.000 15.000	8.0 8.0	0.811 0.811	1.229	2.271 2.271	3.808 3.808	2.639 2.708	4.183 4.211	65.554 67.418	4.682 4.495	0.227	-0.001 -0.001	0.000003	0.162	108.425	8.519 8.140	2.165	0.130	99.22 101.12	'	
	960	16.000	8.0	0.811	1.096	2.271	3.808	2.773	4.237	69.209	4.326	0.227	-0.001	0.000003	0.159	113.469	7.801	1.983	0.119	102.89	'	
	1080	18.000	8.0	0.811	0.979	2.271	3.808	2.890	4.285	72.599	4.033	0.227	-0.001	0.000003	0.157	118.090	7.217	1.834	0.110	106.14		
	1140 1400	19.000 23.333	8.0 8.0	0.811 0.811	0.925	2.271 2.271	3.808 3.808	2.944 3.150	4.307 4.390	74.210 80.658	3.906 3.457	0.227	-0.001 -0.001	0.000003	0.155 0.151	120.266 128.873	6.963 6.075	1.770 1.544	0.106	107.63 113.25	1 '	
	1700	28.333	8.0	0.811	0.526	2.271	3.808	3.344	4.469	87.260	3.080	0.227	-0.001	0.000003	0.147		5.339	1.357	0.081	118.46	, 	
	INCREASE TIM	NE OF STORM T	O DETERMINE I	MAXIMUM	STORAGE E	VENT								WAXIN	1011/131	ORAGE	REQUIRE	D (Cu. M)	_	110.40		

		Member / Loc	cation: ation Details																			Sheet no: X
Consulting Engineers																				Calcs by:		Checked by:
Civil - Structural - Transportati Job Title:	ion -Environmental	_																		xx		хх
PROJECT TITLE	XX.XXX																			Date:		Date:
			-																	XX/XX/XX	x	XX/XX/XXX
Ret:										Calcula	tions											Output
								s	urface Wa	ter Atte	nuation	& Stor	age									
					sor INPI	IT					1	_										
	Total Area to be	Drained	1,175	Sq m	SEI INFU		2 Day M5 (mm) =	101.90			Storage	C = Q*TS	P*(TS + TC	;) + P^2*T	C/Q						
	Impermeability Fa Storm Return Per Allowable Discha	ictor iod T arge per hectare	1.00 100 2.13	Yrs I/s		Ratio 60 In Allowable	Minute M5/2 E permeable Ar Discharge	ayM5 r ea P	0.21 1175 0.02	Sqm Cum/min		W = LN(1 X = LN(7 Y = LN(4	1.06 * M5-6 21/(1 + 15 8 * r/1.06)	0/(48*r)) ' D))		Cr = J0 + J1	1 * (M5-D) + J2 //5-D)) = Cr * (L	2 * (M5-D)^2 LN(T) - 1.5)				
	Time of Concentr	ation TC	8.00	min			60 Minute M Storage Eve	5 nt	21.80 Maximum Event	mm		Z = LN(72 LN(M5-D)	21/16)) = LN(D) +	W + (X * Y)	Z	. ,	,, ,	., ,				
	Time of Storm	Time of Storm	Time of	1							Painfall						Painfall	Disobargo	Discharge	Storage		
	TS	D	Concentration TC	w	x	Y	z	LN(D)	LN(M5-D)	M5-D	Intensity	JO	J1	J2	Cr	M100-D	Intensity +10%	to Storage	to Storage	Required C		
	Minutes 3 5	0.050 0.083	8.0 8.0	0.811	6.021 5.770	2.271 2.271	3.808 3.808	-2.996 -2.485	1.406 1.767	4.079 5.852	81.579 70.225	0.165	0.008	-0.000305 -0.000305	0.194 0.203	7.443 10.996	163.756 145.142	53.448 47.373	3.207 2.842	9.46 14.02		
	7	0.117 0.167	8.0 8.0	0.811 0.811	5.569 5.328	2.271 2.271	3.808 3.808	-2.148 -1.792	1.984 2.196	7.269 8.993	62.305 53.959	0.165	0.008	-0.000305 -0.000305	0.209	13.920 17.537	131.250 115.742	42.839 37.777	2.570 2.267	17.77 22.40		
	13	0.217 0.267	8.0 8.0	0.811	5.134 4.971	2.271 2.271	3.808	-1.529 -1.322	2.343 2.454	10.413 11.632	48.060 43.621	0.165	0.008	-0.000305 -0.000305	0.219	20.523 23.066	104.192 95.148	34.007 31.055	2.040 1.863	26.21 29.45		
	20 25	0.333 0.417	8.0 8.0	0.811 0.811	4.789 4.600	2.271 2.271	3.808 3.808	-1.099 -0.875	2.568 2.678	13.042 14.563	39.127 34.951	0.235	-0.001 -0.001	-0.000017 -0.000017	0.222	25.978 28.837	85.729 76.130	27.981 24.848	1.679 1.491	33.16 36.78		
	30 45	0.500	8.0	0.811	4.441	2.271	3.808	-0.693	2.766	15.894 19.173	31.788	0.235	-0.001	-0.000017	0.218	31.305	68.871 54.614	22.479 17.825	1.349	39.89 47.33		
	60	1.000	8.0	0.811	3.808	2.271	3.808	0.000	3.082	21.800	21.800	0.235	-0.001	-0.000017	0.210	41.832	46.015	15.019	0.901	53.05		
	75 90	1.250	8.0 8.0	0.811	3.597 3.424	2.271 2.271	3.808	0.223	3.179 3.258	24.034 26.001	19.228 17.334	0.235	-0.001	-0.000017 0.000012	0.206	45.623 48.923	40.148 35.877	13.104 11.710	0.786	57.72 61.76		
	105	1.750	8.0	0.811	3.276	2.271	3.808	0.560	3.324	27.771	15.869 14.695	0.250	-0.002	0.000012	0.201	51.837 54.469	32.583 29.958	10.635	0.638	65.30 68.48		
	135	2.250	8.0	0.811	3.032	2.271	3.808	0.811	3.430	30.887	13.728	0.250	-0.002	0.000012	0.197	56.878	27.807	9.076	0.545	71.37		
	165	2.500	8.0	0.811	2.930	2.271	3.808	0.916	3.475	32.284 33.598	12.914	0.250	-0.002	0.000012	0.195	61.183	26.007 24.473	8.488	0.509	76.48		
	180 240	3.000 4.000	8.0 8.0	0.811	2.752	2.271 2.271	3.808 3.808	1.099 1.386	3.551 3.670	34.840 39.258	11.613 9.814	0.250	-0.002 -0.002	0.000012	0.191 0.186	63.133 69.967	23.149 19.241	7.555	0.453	78.78 86.71		
	300	5.000	8.0	0.811	2.250	2.271	3.808	1.609	3.762	43.042	8.608	0.250	-0.002	0.000012	0.182	75.717	16.658	5.437	0.326	93.24		
	420	7.000	8.0	0.811	2.070	2.2/1 2.271	3.808	1.946	3.837	46.390	7.059	0.250	-0.002	0.000012	0.178	85.245	14.803	4.831	0.290	96.84		
	480 540	8.000 9.000	8.0 8.0	0.811 0.811	1.785	2.271 2.271	3.808 3.808	2.079 2.197	3.955 4.003	52.188 54.760	6.524 6.084	0.227 0.227	-0.001 -0.001	0.000003	0.173	89.340 93.097	12.284 11.379	4.009	0.241 0.223	108.15 112.10		
	600	10.000	8.0	0.811	1.563	2.271	3.808	2.303	4.046	57.164	5.716	0.227	-0.001	0.000003	0.169	96.572	10.623	3.467	0.208	115.69		
	720	12.000	8.0	0.811	1.382	2.271	3.808	2.396	4.120	61.570	5.402	0.227	-0.001	0.000003	0.167	102.847	9.428	3.258	0.195	122.00		
	780 840	13.000 14.000	8.0 8.0	0.811 0.811	1.303 1.229	2.271 2.271	3.808 3.808	2.565 2.639	4.153 4.183	63.608 65.554	4.893 4.682	0.227 0.227	-0.001 -0.001	0.000003	0.164 0.162	105.712 108.425	8.945 8.519	2.919 2.781	0.175 0.167	124.81 127.41		
	900	15.000	8.0	0.811	1.160	2.271	3.808	2.708	4.211	67.418	4.495	0.227	-0.001	0.000003	0.161	111.006	8.140	2.657	0.159	129.85		
	1020	17.000	8.0	0.811	1.035	2.271	3.808	2.833	4.262	70.934	4.320	0.227	-0.001	0.000003	0.159	115.827	7.495	2.546	0.153	134.28		
	1080 1140	18.000 19.000	8.0 8.0	0.811 0.811	0.979	2.271 2.271	3.808 3.808	2.890 2.944	4.285 4.307	72.599 74.210	4.033 3.906	0.227 0.227	-0.001 -0.001	0.000003	0.157 0.155	118.090 120.266	7.217 6.963	2.355 2.273	0.141 0.136	136.30 138.21		
	1400 1700	23.333 28.333	8.0 8.0	0.811	0.720	2.271 2.271	3.808 3.808	3.150 3.344	4.390 4.469	80.658 87.260	3.457 3.080	0.227	-0.001 -0.001	0.000003	0.151	128.873 137.527	6.075 5.339	1.983	0.119	145.43 152.12		
	INCREASE T	ME OF STORM 1			STORAGE E	EVENT								MAXIN	IUM ST	ORAGE	REQUIRE	D (Cu. M)	=	152.12		
																					J	

		Member / Loc	ation:																			Sheet no:
		Loca	ation Details																			x
Consulting Engineers Civil - Structural - Transportatio	n -Environmental																			Calcs by:		Checked by:
Job Title:	Job no:																			xx		хх
PROJECT TITLE	XX.XXX																			Date:		Date:
Ref:										Calculat	ions									XX/XX/XX	x	XX/XX/XXX Output
						_															 1	
								S	urface Wa	iter Atte	nuation	& Stor	age									
				U	ser INPL	JT					1											
	Total Area to be D Impermeability Fac	Drained	1,625	Sq m		2 Ratio 60	2 Day M5 (mm Minute M5/2 D) = av M5 r	101.90 0.21	mm		Storage	C = Q*TS - .06 * M5-6	P*(TS + TC)/(48*r))) + P^2*T(C/Q Cr = J0 + J1	l * (M5-D) + J2	* (M5-D)^2				
	Storm Return Perio Allowable Dischar Time of Concentral	od T ge <u>perhectare</u> tion TC	100 2.13 8.00	Yrs I/s min		Im Allowable I	permeable Ar Discharge 60 Minute M	ea P	1625 0.02 21.80	Sqm Cum/min mm		X = LN(7) Y = LN(48 Z = LN(72	21/(1 + 15 [*] 3 * r/1.06) 21/16)	D))		LN((MT-D)/N	15-D)) = Cr * (L	N(T) - 1.5)				
							Storage Even	nt .	Maximum Event			LN(M5-D)	= LŃ(D) +	W + (X * Y)	z							
	Time of Storm	Time of Storm	Time of Concentration		-			LN(D)	LN(M5-D)	M5-D	Rainfall Intensity					M100-D	Rainfall Intensity	Discharge to Storage	Discharge to Storage	Storage Required		
	TS Minutes 3	D Hours 0.050	TC Minutes 8.0	0.811	X 6.021	Y 2.271	2 3.808	-2.996	1.406	mm 4.079	mm/hr 81.579	J0 0.165	J1 0.008	-0.000305	Cr 0.194	mm 7.443	+10% mm/hr 163.756	l/s 73.918	Q Cu.m/min 4.435	C Cu. m 13.08		
	5 7 10	0.083 0.117 0.167	8.0 8.0 8.0	0.811 0.811 0.811	5.770 5.569 5.328	2.271 2.271 2.271	3.808 3.808 3.808	-2.485 -2.148 -1.792	1.767 1.984 2.196	5.852 7.269 8.993	70.225 62.305 53.959	0.165 0.165 0.165	0.008 0.008 0.008	-0.000305 -0.000305 -0.000305	0.203 0.209 0.215	10.996 13.920 17.537	145.142 131.250 115.742	65.516 59.245 52.245	3.931 3.555 3.135	19.39 24.57 30.97		
	13 16	0.217 0.267	8.0 8.0	0.811 0.811	5.134 4.971	2.271 2.271	3.808 3.808	-1.529 -1.322	2.343 2.454	10.413 11.632	48.060 43.621	0.165 0.165	0.008	-0.000305 -0.000305	0.219	20.523 23.066	104.192 95.148	47.031 42.949	2.822 2.577	36.25 40.73		
	20 25	0.333	8.0	0.811	4.789	2.271	3.808	-1.099	2.568	13.042 14.563	39.127 34.951	0.235	-0.001	-0.000017	0.222	25.978 28.837	85.729	38.697 34.364	2.322	45.86		
	30 45	0.750	8.0	0.811	4.441	2.271	3.808	-0.693	2.953	15.894	25.564	0.235	-0.001	-0.000017	0.218	31.305	54.614	24.652	1.865	65.46		
	60 75	1.000	8.0 8.0	0.811	3.808	2.271 2.271	3.808 3.808	0.000	3.082	21.800 24.034	21.800 19.228	0.235	-0.001 -0.001	-0.000017 -0.000017	0.210	41.832 45.623	46.015 40.148	20.771 18.122	1.246	73.37 79.83	'	
	90 105	1.500 1.750	8.0 8.0	0.811 0.811	3.424 3.276	2.271 2.271	3.808 3.808	0.405	3.258 3.324	26.001 27.771	17.334 15.869	0.250	-0.002 -0.002	0.000012 0.000012	0.204	48.923 51.837	35.877 32.583	16.194 14.708	0.972	85.42 90.31		
	120 135	2.000 2.250	8.0 8.0	0.811 0.811	3.147 3.032	2.271 2.271	3.808 3.808	0.693 0.811	3.381 3.430	29.390 30.887	14.695 13.728	0.250 0.250	-0.002 -0.002	0.000012 0.000012	0.199 0.197	54.469 56.878	29.958 27.807	13.523 12.552	0.811 0.753	94.71 98.70	'	
	150 165	2.500	8.0 8.0	0.811	2.930 2.837	2.271	3.808 3.808	0.916	3.475 3.514	32.284 33.598	12.914 12.217	0.250	-0.002	0.000012	0.195	59.106 61.183	26.007 24.473	11.739 11.047	0.704	102.37 105.78	'	
	180	3.000	8.0	0.811	2.752	2.271	3.808	1.099	3.551	34.840	11.613	0.250	-0.002	0.000012	0.191	63.133	23.149	10.449	0.627	108.95		
	300	5.000	8.0	0.811	2.250	2.271	3.808	1.609	3.762	43.042	8.608	0.250	-0.002	0.000012	0.182	75.717	16.658	7.519	0.451	128.95	'	
	360 420	6.000 7.000	8.0 8.0	0.811	2.070	2.271 2.271	3.808 3.808	1.792	3.837	46.390	7.732	0.250	-0.002	0.000012	0.178	80.742 85.245	14.803 13.396	6.682	0.401	136.69		
	480 540	8.000 9.000	8.0 8.0	0.811 0.811	1.785 1.668	2.271 2.271	3.808 3.808	2.079 2.197	3.955 4.003	52.188 54.760	6.524 6.084	0.227 0.227	-0.001 -0.001	0.000003	0.173 0.171	89.340 93.097	12.284 11.379	5.545 5.136	0.333 0.308	149.57 155.04		
	600 660	10.000 11.000	8.0 8.0	0.811	1.563 1.469	2.271 2.271	3.808 3.808	2.303 2.398	4.046	57.164 59.427	5.716 5.402	0.227	-0.001 -0.001	0.000003	0.169	96.572 99.810	10.623 9.981	4.795	0.288	160.00 164.55	'	
	720	12.000	8.0 8.0	0.811	1.382	2.271	3.808	2.485	4.120	61.570	5.131	0.227	-0.001	0.000003	0.165	102.847	9.428	4.256	0.255	168.73 172.60		
	840	14.000	8.0	0.811	1.229	2.271	3.808	2.639	4.183	65.554	4.682	0.227	-0.001	0.000003	0.162	108.425	8.519	3.845	0.231	176.21	'	
	900 960	15.000 16.000	8.0 8.0	0.811	1.160 1.096	2.271 2.271	3.808 3.808	2.708 2.773	4.211 4.237	67.418 69.209	4.495	0.227	-0.001 -0.001	0.000003	0.161 0.159	111.006 113.469	8.140 7.801	3.675 3.521	0.220	179.58 182.73	1 '	
	1020 1080	17.000 18.000	8.0 8.0	0.811 0.811	1.035 0.979	2.271 2.271	3.808 3.808	2.833 2.890	4.262 4.285	70.934 72.599	4.173 4.033	0.227 0.227	-0.001 -0.001	0.000003	0.158 0.157	115.827 118.090	7.495	3.383 3.257	0.203	185.70 188.50	1 '	
	1140 1400	19.000 23.333	8.0 8.0	0.811	0.925	2.271	3.808 3.808	2.944 3.150	4.307 4.390	74.210 80.658	3.906 3.457	0.227	-0.001	0.000003	0.155	120.266 128.873	6.963 6.075	3.143	0.189	191.15 201.13		
	1700	28.333	8.0	0.811	0.526	2.271	3.808	3.344	4.469	87.260	3.080	0.227	-0.001	0.000003	0.147	137.527	5.339	2.410	0.145	210.37	/ 1	
	INCREASE TIM	NE OF STORM T	O DETERMINE I	MAXIMUM S	STORAGE E	VENT	1							МАХІМ	UM ST	ORAGE	REQUIRE	D (Cu. M)	=	210.37		
																					1	

		Member / Loo	cation:		_																	Sheet no:
ROUGHAN & O'DONOVAN		Loc	ation Details																			x
Consulting Engineers Civil - Structural - Transportation	n -Environmental																			Calcs by:		Checked by:
Job Title:	Job no:																			ХХ		xx
PROJECT TITLE	xx.xxx																			Date:		Date:
Ref:										Calcula	tions									XX/XX/XX	x	XX/XX/XXX Output
																					 1	
							_	S	urface Wa	iter Atte	nuatior	1 & Stor	rage									
				U	ser INPL	JT]											
	Total Area to be D Impermeability Fac	Drained stor	3,168 1.00	Sq m		Ratio 60	2 Day M5 (mm Minute M5/2 D)= vayM5 r	101.90 0.21	mm		Storage W = LN(C = Q*TS 1.06 * M5-6	- P*(TS + TC i0/(48*r))	;) + P^2*T	C/Q Cr = J0 + J1	* (M5-D) + J2	* (M5-D)^2				
	Storm Return Perio Allowable Dischar Time of Concentra	nd T rge <u>per hectare</u> ition TC	2.13 8.00	Yrs /s min		Im Allowable I	permeable Ar Discharge 60 Minute M	98 P 5	3168 0.04 21.80 Maximum Event	Sq m Cu m/min mm		X = LN(7 Y = LN(7 LN(M5-D	21/(1 + 15 8 * r/1.06) 21/16)	- U)) - W + (X * Y)	7	LN((MT-D)/N	15-D)) = Cr * (L	.N(T) - 1.5)				
							Storage Even		Waxmun Lven		J	EN(IND-D) - EN(D) -	H · (X · I)								
	Time of Storm	Time of Storm D	Time of Concentration TC	w	x	Y	z	LN(D)	LN(M5-D)	M5-D	Rainfall Intensity	JO	J1	J2	Cr	M100-D	Rainfall Intensity +10%	Discharge to Storage	Discharge to Storage Q	Storage Required C		
	Minutes 3 5	Hours 0.050 0.083	Minutes 8.0 8.0	0.811 0.811	6.021 5.770	2.271 2.271	3.808 3.808	-2.996 -2.485	1.406	mm 4.079 5.852	mm/hr 81.579 70.225	0.165	0.008	-0.000305	0.194	mm 7.443 10.996	mm/hr 163.756 145.142	1/s 144.105 127.725	Cu.m/min 8.646 7.664	Cu. m 25.49 37.79		
	7 10 13	0.117 0.167 0.217	8.0 8.0 8.0	0.811 0.811 0.811	5.569 5.328 5.134	2.271 2.271 2.271	3.808 3.808 3.808	-2.148 -1.792 -1.529	1.984 2.196 2.343	7.269 8.993 10.413	62.305 53.959 48.060	0.165 0.165 0.165	0.008 0.008 0.008	-0.000305 -0.000305 -0.000305	0.209 0.215 0.219	13.920 17.537 20.523	131.250 115.742 104.192	115.500 101.853 91.689	6.930 6.111 5.501	47.90 60.39 70.67		
	16 20 25	0.267 0.333 0.417	8.0 8.0 8.0	0.811 0.811 0.811	4.971 4.789 4.600	2.271 2.271 2.271	3.808 3.808 3.808	-1.322 -1.099 -0.875	2.454 2.568 2.678	11.632 13.042 14.563	43.621 39.127 34.951	0.165 0.235 0.235	0.008 -0.001 -0.001	-0.000305 -0.000017 -0.000017	0.220 0.222 0.220	23.066 25.978 28.837	95.148 85.729 76.130	83.730 75.441 66.995	5.024 4.526 4.020	79.41 89.40 99.16		
	30 45	0.500	8.0 8.0	0.811 0.811	4.441 4.075	2.271 2.271	3.808 3.808	-0.693 -0.288	2.766 2.953	15.894 19.173	31.788 25.564	0.235 0.235	-0.001 -0.001	-0.000017 -0.000017	0.218 0.214	31.305 37.237	68.871 54.614	60.606 48.060	3.636 2.884	107.56 127.62		
	60 75	1.000	8.0 8.0	0.811	3.808	2.271 2.271	3.808	0.000	3.082	21.800 24.034	21.800 19.228	0.235	-0.001	-0.000017	0.210	41.832 45.623	46.015 40.148	40.494 35.330	2.430	143.03 155.63		
	105	1.750	8.0	0.811	3.424	2.271	3.808	0.405	3.324	27.771	15.869	0.250	-0.002	0.000012	0.204	46.923 51.837 54.460	32.583	28.673	1.720	176.07		
	135	2.250	8.0	0.811	3.032	2.271	3.808	0.811	3.430	29.390 30.887 32.284	13.728	0.250	-0.002	0.000012	0.197	56.878 59.106	29.958	20.303 24.470 22.886	1.468	192.43		
	165	2.750	8.0	0.811	2.837	2.271	3.808	1.012	3.514	33.598	12.217	0.250	-0.002	0.000012	0.193	61.183	24.473	21.536	1.292	206.21		
	240	4.000	8.0	0.811	2.470	2.271	3.808	1.386	3.670	39.258	9.814	0.250	-0.002	0.000012	0.186	69.967	19.241	16.932	1.016	233.79		
	360	6.000	8.0	0.811	2.070	2.271	3.808	1.792	3.837	46.390	7.732	0.250	-0.002	0.000012	0.178	80.742	14.803	13.026	0.782	266.48	1 '	
	480	8.000	8.0	0.811	1.785	2.271	3.808	2.079	3.955	52.188	6.524	0.227	-0.001	0.000003	0.173	89.340	12.284	10.810	0.649	291.59		
	600	10.000	8.0	0.811	1.563	2.271	3.808	2.303	4.005	57.164	5.716	0.227	-0.001	0.000003	0.169	96.572	10.623	9.348	0.561	311.93	1 '	
	720	12.000	8.0	0.811	1.382	2.271	3.808	2.398	4.120	61.570	5.402	0.227	-0.001	0.000003	0.167	102.847	9.981	8.296	0.527	328.95		
	780 840	13.000	8.0	0.811	1.303	2.2/1 2.271	3.808	2.565	4.183	65.554	4.893	0.227	-0.001	0.000003	0.164	108.425	6.945 8.519	7.8/1	0.472	343.53	1 '	
	900 960	15.000 16.000	8.0 8.0	0.811	1.160	2.271	3.808 3.808	2.708	4.211 4.237	67.418 69.209	4.495 4.326	0.227	-0.001	0.000003	0.161	111.006 113.469	8.140 7.801	7.164	0.430	350.09 356.25		
	1020 1080	17.000 18.000	8.0 8.0	0.811 0.811	1.035 0.979	2.271 2.271	3.808 3.808	2.833 2.890	4.262 4.285	70.934 72.599	4.173 4.033	0.227	-0.001 -0.001	0.000003	0.158 0.157	115.827 118.090	7.495 7.217	6.595 6.351	0.396	362.03 367.49	'	
	1140 1400	19.000 23.333	8.0 8.0	0.811	0.925	2.271	3.808 3.808	2.944 3.150	4.307 4.390	74.210 80.658	3.906 3.457	0.227	-0.001	0.000003	0.155	120.266	6.963 6.075	6.127 5.346	0.368	372.65 392.11		
	1700	28.333	8.0	0.811	0.526	2.271	3.808	3.344	4.469	87.260	3.080	0.227	-0.001	0.000003	0.147		5.339	4.699	0.282	410.13	, 	
	INCREASE TIN	NE OF STORM	TO DETERMINE N	MUM S	STORAGE E	VENT										ORAGE	REQUIRE	D (Cu. M)	-	410.13		
1																						
Met Eireann																						
-------------	--------	----------	---------	-----	---------	-----------	--	--	--	--	--											
Return	Period	Rainfall	Depths	for	sliding	Durations																
Irish	Grid:	Easting:	311871,	Noi	thing:	223676,																

Interval							Years								
DURATION	6months, lyear,	2,	3,	4,	5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	3.0, 4.3,	5.0,	6.0,	6.7,	7.3,	9.2,	11.3,	12.7,	14.8,	16.6,	18.0,	20.1,	21.8,	23.3,	N/A ,
10 mins	4.1, 5.9,	6.9,	8.4,	9.4,	10.2,	12.8,	15.8,	17.7,	20.6,	23.1,	25.0,	28.1,	30.4,	32.4,	N/A ,
15 mins	4.9, 7.0,	8.1,	9.9,	11.1,	12.0,	15.0,	18.5,	20.9,	24.2,	27.1,	29.4,	33.0,	35.8,	38.1,	N/A ,
30 mins	6.6, 9.4,	11.0,	13.3,	14.9,	16.2,	20.3,	25.0,	28.1,	32.6,	36.6,	39.7,	44.5,	48.3,	51.4,	N/A ,
1 hours	8.8, 12.7,	14.8,	17.9,	20.1,	21.8,	27.3,	33.7,	37.9,	43.9,	49.3,	53.5,	60.0,	65.1,	69.3,	N/A ,
2 hours	11.9, 17.1,	19.9,	24.2,	27.1,	29.4,	36.8,	45.4,	51.1,	59.2,	66.5,	72.1,	80.9,	87.7,	93.4,	N/A ,
3 hours	14.2, 20.4,	23.7,	28.8,	32.3,	35.0,	43.9,	54.1,	60.9,	70.5,	79.2,	85.9,	96.3,	104.4,	111.2,	N/A ,
4 hours	16.1, 23.0,	26.8,	32.6,	36.5,	39.6,	49.7,	61.2,	68.9,	79.8,	89.6,	97.2,	109.0,	118.2,	125.9,	N/A ,
6 hours	19.1, 27.4,	32.0,	38.8,	43.5,	47.1,	59.2,	72.9,	82.1,	95.1,	106.7,	115.8,	129.8,	140.8,	149.9,	N/A ,
9 hours	22.8, 32.7,	38.1,	46.2,	51.8,	56.1,	70.4,	86.8,	97.8,	113.2,	127.1,	137.9,	154.6,	167.7,	178.5,	N/A ,
12 hours	25.8, 37.0,	43.1,	52.3,	58.6,	63.5,	79.7,	98.3,	110.7,	128.2,	143.9,	156.1,	175.0,	189.8,	202.1,	N/A ,
18 hours	30.7, 44.1,	51.3,	62.3,	69.8,	75.7,	95.0,	117.1,	131.8,	152.6,	171.3,	185.9,	208.4,	226.0,	240.7,	N/A ,
24 hours	34.8, 49.9,	58.1,	70.5,	79.0,	85.7,	107.5,	132.5,	149.2,	172.8,	193.9,	210.4,	235.9,	255.9,	272.4,	331.0,
2 days	44.5, 62.0,	71.3,	85.3,	94.6,	101.9,	125.6,	152.3,	169.8,	194.4,	216.2,	233.0,	258.9,	279.0,	295.6,	353.5,
3 days	52.3, 71.7,	81.9,	97.1,	107.2,	115.0,	140.3,	168.4,	186.7,	212.3,	234.8,	252.2,	278.7,	299.1,	316.0,	374.5,
4 days	59.3, 80.2,	91.2,	107.4,	118.1,	126.4,	153.0,	182.4,	201.5,	227.9,	251.2,	269.0,	296.1,	317.0,	334.2,	393.6,
6 days	71.5, 95.1,	107.4,	125.3,	137.1,	146.1,	175.0,	206.6,	227.0,	255.0,	279.5,	298.2,	326.5,	348.2,	366.0,	427.1,
8 days	82.3, 108.3,	121.6,	140.9,	153.7,	163.4,	194.2,	227.6,	249.1,	278.5,	304.1,	323.5,	353.0,	375.4,	393.8,	456.6,
10 days	92.3, 120.3,	134.6,	155.2,	168.7,	179.0,	211.5,	246.6,	269.1,	299.7,	326.3,	346.4,	376.8,	399.9,	418.8,	483.2,
12 days	101.7, 131.5,	146.7,	168.4,	182.7,	193.5,	227.5,	264.2,	287.5,	319.2,	346.7,	367.4,	398.7,	422.5,	441.8,	507.7,
16 days	119.1, 152.3,	168.9,	192.8,	208.3,	220.0,	256.8,	296.1,	321.0,	354.7,	383.7,	405.6,	438.5,	463.3,	483.5,	552.0,
20 days	135.4, 171.5,	189.5,	215.2,	231.8,	244.3,	283.5,	325.1,	351.3,	386.8,	417.2,	440.1,	474.3,	500.2,	521.2,	592.0,
25 days	154.5, 193.9,	213.4,	241.1,	259.0,	272.4,	314.3,	358.5,	386.2,	423.6,	455.5,	479.5,	515.3,	542.3,	564.1,	637.6,
NOTES:															

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin',

Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

APPENDIX F OPW PRELIMINARY FLOOD RISK ASSESSMENT MAP

Location Plan : Legend: Flood Extents Fluvial - Indicative 1% AEP (100-yr) Event Fluvial - Extreme Event Coastal - Indicative 0.5% AEP (200-yr) Event Coastal - Extreme Event Pluvial - Indicative 1% AEP (100-yr) Event Pluvial - Extreme Event Groundwater Flood Extents Lakes / Turloughs **PFRA Outcomes** Probable Area for Further Assesment ** Possible Area for Further Assesment 22 Important User Note: The flood extents shown on these maps are based on broad-scale simple analysis and may not be accurate for a specific location. Information on the purpose, development and limitations of these maps is available in the relevant reports (see www.cfram.ie). Users should seek professional advice if they intend to rely on the maps in any way. If you believe that the maps are inaccurate in some way please forward full details by contacting the OPW (refer to PFRA Information leaflets or 'Have Your Say' on www.cfram.ie). Office of Public Works Jonathon Swift Street Trim OPW

Project : PRELIMINARY FLOOD RISK ASSESMENT (PFRA) Map : PFRA Indicative extents and outcomes - Draft for Consultation Date : July2011 Figure By : PJW Checked By : MA Date : July 2011 Figure No. Revision 2019/MAP/221/A 0 Drawing Scale : 1:50,000 Plot Scale: 1:1 @ A3

APPENDIX G TYPICAL DETAILS FOR SURFACE WATER STORAGE

Figure G -1 : Typical attenuation swale Taken from the CIRIA C753 SuDS Manual Figure 17.1

Figure G - 2 : Typical plan view of swale Taken from the CIRIA C753 SuDS Manual Figure 17.5

Figure G - 3 : Typical check dam details Taken from the CIRIA C753 SuDS Manual Figure 17.13

Figure G - 4 : Plan and elevation of vegetated detention basin Taken from the CIRIA C753 SuDS Manual Figure 22.22

Figure G - 5 : Typical extensive green roof components Taken from the CIRIA C753 SuDS Manual Figure 12.1

Prepared by Roughan & O'Donovan Arena House, Arena Road, Sandyford, Dublin 18 Tel: +353 1 2940800 Fax: +353 1 2940820 Email: info@rod.ie www.rod.ie